Transparent conducting oxides: A δ-doped superlattice approach

نویسندگان

  • Valentino R. Cooper
  • Sung S. Ambrose Seo
  • Suyoun Lee
  • Jun Sung Kim
  • Woo Seok Choi
  • Satoshi Okamoto
  • Ho Nyung Lee
چکیده

Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn₀, In₂O₃, and SnO₂ as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode mate...

متن کامل

Microscopic origin of universal quasilinear band structures of transparent conducting oxides.

A tight-binding-based microscopic theory is developed that accounts for quasilinear conduction bands appearing commonly in transparent conducting oxides. It is found that the interaction between oxygen p and metal s orbtials plays a critical role in determining the band structure around the conduction-band minimum. Under certain types of short-range orders, the tight-binding model universally l...

متن کامل

Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices

We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility whi...

متن کامل

Transparent Conducting Oxides—An Up-To-Date Overview

Transparent conducting oxides (TCOs) are electrical conductive materials with comparably low absorption of electromagnetic waves within the visible region of the spectrum. They are usually prepared with thin film technologies and used in opto-electrical apparatus such as solar cells, displays, opto-electrical interfaces and circuitries. Here, based on a modern database-system, aspects of up-to-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014